(0) Obligation:
The Runtime Complexity (innermost) of the given
CpxTRS could be proven to be
BOUNDS(1, n^1).
The TRS R consists of the following rules:
group3(@l) → group3#1(@l)
group3#1(::(@x, @xs)) → group3#2(@xs, @x)
group3#1(nil) → nil
group3#2(::(@y, @ys), @x) → group3#3(@ys, @x, @y)
group3#2(nil, @x) → nil
group3#3(::(@z, @zs), @x, @y) → ::(tuple#3(@x, @y, @z), group3(@zs))
group3#3(nil, @x, @y) → nil
zip3(@l1, @l2, @l3) → zip3#1(@l1, @l2, @l3)
zip3#1(::(@x, @xs), @l2, @l3) → zip3#2(@l2, @l3, @x, @xs)
zip3#1(nil, @l2, @l3) → nil
zip3#2(::(@y, @ys), @l3, @x, @xs) → zip3#3(@l3, @x, @xs, @y, @ys)
zip3#2(nil, @l3, @x, @xs) → nil
zip3#3(::(@z, @zs), @x, @xs, @y, @ys) → ::(tuple#3(@x, @y, @z), zip3(@xs, @ys, @zs))
zip3#3(nil, @x, @xs, @y, @ys) → nil
Rewrite Strategy: INNERMOST
(1) CpxTrsMatchBoundsTAProof (EQUIVALENT transformation)
A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 2.
The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by:
final states : [1, 2, 3, 4, 5, 6, 7, 8]
transitions:
::0(0, 0) → 0
nil0() → 0
tuple#30(0, 0, 0) → 0
group30(0) → 1
group3#10(0) → 2
group3#20(0, 0) → 3
group3#30(0, 0, 0) → 4
zip30(0, 0, 0) → 5
zip3#10(0, 0, 0) → 6
zip3#20(0, 0, 0, 0) → 7
zip3#30(0, 0, 0, 0, 0) → 8
group3#11(0) → 1
group3#21(0, 0) → 2
nil1() → 2
group3#31(0, 0, 0) → 3
nil1() → 3
tuple#31(0, 0, 0) → 9
group31(0) → 10
::1(9, 10) → 4
nil1() → 4
zip3#11(0, 0, 0) → 5
zip3#21(0, 0, 0, 0) → 6
nil1() → 6
zip3#31(0, 0, 0, 0, 0) → 7
nil1() → 7
zip31(0, 0, 0) → 11
::1(9, 11) → 8
nil1() → 8
group3#12(0) → 10
group3#21(0, 0) → 1
nil1() → 1
group3#31(0, 0, 0) → 2
::1(9, 10) → 3
zip3#12(0, 0, 0) → 11
zip3#21(0, 0, 0, 0) → 5
nil1() → 5
zip3#31(0, 0, 0, 0, 0) → 6
::1(9, 11) → 7
group3#31(0, 0, 0) → 1
::1(9, 10) → 2
zip3#31(0, 0, 0, 0, 0) → 5
::1(9, 11) → 6
group3#21(0, 0) → 10
nil1() → 10
zip3#21(0, 0, 0, 0) → 11
nil1() → 11
group3#31(0, 0, 0) → 10
::1(9, 10) → 1
zip3#31(0, 0, 0, 0, 0) → 11
::1(9, 11) → 5
::1(9, 10) → 10
::1(9, 11) → 11
(2) BOUNDS(1, n^1)
(3) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted Cpx (relative) TRS to CDT
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
group3(z0) → group3#1(z0)
group3#1(::(z0, z1)) → group3#2(z1, z0)
group3#1(nil) → nil
group3#2(::(z0, z1), z2) → group3#3(z1, z2, z0)
group3#2(nil, z0) → nil
group3#3(::(z0, z1), z2, z3) → ::(tuple#3(z2, z3, z0), group3(z1))
group3#3(nil, z0, z1) → nil
zip3(z0, z1, z2) → zip3#1(z0, z1, z2)
zip3#1(::(z0, z1), z2, z3) → zip3#2(z2, z3, z0, z1)
zip3#1(nil, z0, z1) → nil
zip3#2(::(z0, z1), z2, z3, z4) → zip3#3(z2, z3, z4, z0, z1)
zip3#2(nil, z0, z1, z2) → nil
zip3#3(::(z0, z1), z2, z3, z4, z5) → ::(tuple#3(z2, z4, z0), zip3(z3, z5, z1))
zip3#3(nil, z0, z1, z2, z3) → nil
Tuples:
GROUP3(z0) → c(GROUP3#1(z0))
GROUP3#1(::(z0, z1)) → c1(GROUP3#2(z1, z0))
GROUP3#1(nil) → c2
GROUP3#2(::(z0, z1), z2) → c3(GROUP3#3(z1, z2, z0))
GROUP3#2(nil, z0) → c4
GROUP3#3(::(z0, z1), z2, z3) → c5(GROUP3(z1))
GROUP3#3(nil, z0, z1) → c6
ZIP3(z0, z1, z2) → c7(ZIP3#1(z0, z1, z2))
ZIP3#1(::(z0, z1), z2, z3) → c8(ZIP3#2(z2, z3, z0, z1))
ZIP3#1(nil, z0, z1) → c9
ZIP3#2(::(z0, z1), z2, z3, z4) → c10(ZIP3#3(z2, z3, z4, z0, z1))
ZIP3#2(nil, z0, z1, z2) → c11
ZIP3#3(::(z0, z1), z2, z3, z4, z5) → c12(ZIP3(z3, z5, z1))
ZIP3#3(nil, z0, z1, z2, z3) → c13
S tuples:
GROUP3(z0) → c(GROUP3#1(z0))
GROUP3#1(::(z0, z1)) → c1(GROUP3#2(z1, z0))
GROUP3#1(nil) → c2
GROUP3#2(::(z0, z1), z2) → c3(GROUP3#3(z1, z2, z0))
GROUP3#2(nil, z0) → c4
GROUP3#3(::(z0, z1), z2, z3) → c5(GROUP3(z1))
GROUP3#3(nil, z0, z1) → c6
ZIP3(z0, z1, z2) → c7(ZIP3#1(z0, z1, z2))
ZIP3#1(::(z0, z1), z2, z3) → c8(ZIP3#2(z2, z3, z0, z1))
ZIP3#1(nil, z0, z1) → c9
ZIP3#2(::(z0, z1), z2, z3, z4) → c10(ZIP3#3(z2, z3, z4, z0, z1))
ZIP3#2(nil, z0, z1, z2) → c11
ZIP3#3(::(z0, z1), z2, z3, z4, z5) → c12(ZIP3(z3, z5, z1))
ZIP3#3(nil, z0, z1, z2, z3) → c13
K tuples:none
Defined Rule Symbols:
group3, group3#1, group3#2, group3#3, zip3, zip3#1, zip3#2, zip3#3
Defined Pair Symbols:
GROUP3, GROUP3#1, GROUP3#2, GROUP3#3, ZIP3, ZIP3#1, ZIP3#2, ZIP3#3
Compound Symbols:
c, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13
(5) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 6 trailing nodes:
ZIP3#3(nil, z0, z1, z2, z3) → c13
GROUP3#3(nil, z0, z1) → c6
ZIP3#2(nil, z0, z1, z2) → c11
ZIP3#1(nil, z0, z1) → c9
GROUP3#2(nil, z0) → c4
GROUP3#1(nil) → c2
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
group3(z0) → group3#1(z0)
group3#1(::(z0, z1)) → group3#2(z1, z0)
group3#1(nil) → nil
group3#2(::(z0, z1), z2) → group3#3(z1, z2, z0)
group3#2(nil, z0) → nil
group3#3(::(z0, z1), z2, z3) → ::(tuple#3(z2, z3, z0), group3(z1))
group3#3(nil, z0, z1) → nil
zip3(z0, z1, z2) → zip3#1(z0, z1, z2)
zip3#1(::(z0, z1), z2, z3) → zip3#2(z2, z3, z0, z1)
zip3#1(nil, z0, z1) → nil
zip3#2(::(z0, z1), z2, z3, z4) → zip3#3(z2, z3, z4, z0, z1)
zip3#2(nil, z0, z1, z2) → nil
zip3#3(::(z0, z1), z2, z3, z4, z5) → ::(tuple#3(z2, z4, z0), zip3(z3, z5, z1))
zip3#3(nil, z0, z1, z2, z3) → nil
Tuples:
GROUP3(z0) → c(GROUP3#1(z0))
GROUP3#1(::(z0, z1)) → c1(GROUP3#2(z1, z0))
GROUP3#2(::(z0, z1), z2) → c3(GROUP3#3(z1, z2, z0))
GROUP3#3(::(z0, z1), z2, z3) → c5(GROUP3(z1))
ZIP3(z0, z1, z2) → c7(ZIP3#1(z0, z1, z2))
ZIP3#1(::(z0, z1), z2, z3) → c8(ZIP3#2(z2, z3, z0, z1))
ZIP3#2(::(z0, z1), z2, z3, z4) → c10(ZIP3#3(z2, z3, z4, z0, z1))
ZIP3#3(::(z0, z1), z2, z3, z4, z5) → c12(ZIP3(z3, z5, z1))
S tuples:
GROUP3(z0) → c(GROUP3#1(z0))
GROUP3#1(::(z0, z1)) → c1(GROUP3#2(z1, z0))
GROUP3#2(::(z0, z1), z2) → c3(GROUP3#3(z1, z2, z0))
GROUP3#3(::(z0, z1), z2, z3) → c5(GROUP3(z1))
ZIP3(z0, z1, z2) → c7(ZIP3#1(z0, z1, z2))
ZIP3#1(::(z0, z1), z2, z3) → c8(ZIP3#2(z2, z3, z0, z1))
ZIP3#2(::(z0, z1), z2, z3, z4) → c10(ZIP3#3(z2, z3, z4, z0, z1))
ZIP3#3(::(z0, z1), z2, z3, z4, z5) → c12(ZIP3(z3, z5, z1))
K tuples:none
Defined Rule Symbols:
group3, group3#1, group3#2, group3#3, zip3, zip3#1, zip3#2, zip3#3
Defined Pair Symbols:
GROUP3, GROUP3#1, GROUP3#2, GROUP3#3, ZIP3, ZIP3#1, ZIP3#2, ZIP3#3
Compound Symbols:
c, c1, c3, c5, c7, c8, c10, c12
(7) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
group3(z0) → group3#1(z0)
group3#1(::(z0, z1)) → group3#2(z1, z0)
group3#1(nil) → nil
group3#2(::(z0, z1), z2) → group3#3(z1, z2, z0)
group3#2(nil, z0) → nil
group3#3(::(z0, z1), z2, z3) → ::(tuple#3(z2, z3, z0), group3(z1))
group3#3(nil, z0, z1) → nil
zip3(z0, z1, z2) → zip3#1(z0, z1, z2)
zip3#1(::(z0, z1), z2, z3) → zip3#2(z2, z3, z0, z1)
zip3#1(nil, z0, z1) → nil
zip3#2(::(z0, z1), z2, z3, z4) → zip3#3(z2, z3, z4, z0, z1)
zip3#2(nil, z0, z1, z2) → nil
zip3#3(::(z0, z1), z2, z3, z4, z5) → ::(tuple#3(z2, z4, z0), zip3(z3, z5, z1))
zip3#3(nil, z0, z1, z2, z3) → nil
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
GROUP3(z0) → c(GROUP3#1(z0))
GROUP3#1(::(z0, z1)) → c1(GROUP3#2(z1, z0))
GROUP3#2(::(z0, z1), z2) → c3(GROUP3#3(z1, z2, z0))
GROUP3#3(::(z0, z1), z2, z3) → c5(GROUP3(z1))
ZIP3(z0, z1, z2) → c7(ZIP3#1(z0, z1, z2))
ZIP3#1(::(z0, z1), z2, z3) → c8(ZIP3#2(z2, z3, z0, z1))
ZIP3#2(::(z0, z1), z2, z3, z4) → c10(ZIP3#3(z2, z3, z4, z0, z1))
ZIP3#3(::(z0, z1), z2, z3, z4, z5) → c12(ZIP3(z3, z5, z1))
S tuples:
GROUP3(z0) → c(GROUP3#1(z0))
GROUP3#1(::(z0, z1)) → c1(GROUP3#2(z1, z0))
GROUP3#2(::(z0, z1), z2) → c3(GROUP3#3(z1, z2, z0))
GROUP3#3(::(z0, z1), z2, z3) → c5(GROUP3(z1))
ZIP3(z0, z1, z2) → c7(ZIP3#1(z0, z1, z2))
ZIP3#1(::(z0, z1), z2, z3) → c8(ZIP3#2(z2, z3, z0, z1))
ZIP3#2(::(z0, z1), z2, z3, z4) → c10(ZIP3#3(z2, z3, z4, z0, z1))
ZIP3#3(::(z0, z1), z2, z3, z4, z5) → c12(ZIP3(z3, z5, z1))
K tuples:none
Defined Rule Symbols:none
Defined Pair Symbols:
GROUP3, GROUP3#1, GROUP3#2, GROUP3#3, ZIP3, ZIP3#1, ZIP3#2, ZIP3#3
Compound Symbols:
c, c1, c3, c5, c7, c8, c10, c12
(9) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
GROUP3#1(::(z0, z1)) → c1(GROUP3#2(z1, z0))
GROUP3#2(::(z0, z1), z2) → c3(GROUP3#3(z1, z2, z0))
GROUP3#3(::(z0, z1), z2, z3) → c5(GROUP3(z1))
ZIP3#1(::(z0, z1), z2, z3) → c8(ZIP3#2(z2, z3, z0, z1))
We considered the (Usable) Rules:none
And the Tuples:
GROUP3(z0) → c(GROUP3#1(z0))
GROUP3#1(::(z0, z1)) → c1(GROUP3#2(z1, z0))
GROUP3#2(::(z0, z1), z2) → c3(GROUP3#3(z1, z2, z0))
GROUP3#3(::(z0, z1), z2, z3) → c5(GROUP3(z1))
ZIP3(z0, z1, z2) → c7(ZIP3#1(z0, z1, z2))
ZIP3#1(::(z0, z1), z2, z3) → c8(ZIP3#2(z2, z3, z0, z1))
ZIP3#2(::(z0, z1), z2, z3, z4) → c10(ZIP3#3(z2, z3, z4, z0, z1))
ZIP3#3(::(z0, z1), z2, z3, z4, z5) → c12(ZIP3(z3, z5, z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(::(x1, x2)) = [1] + x1 + x2
POL(GROUP3(x1)) = x1
POL(GROUP3#1(x1)) = x1
POL(GROUP3#2(x1, x2)) = x1
POL(GROUP3#3(x1, x2, x3)) = x1
POL(ZIP3(x1, x2, x3)) = x1
POL(ZIP3#1(x1, x2, x3)) = x1
POL(ZIP3#2(x1, x2, x3, x4)) = x3 + x4
POL(ZIP3#3(x1, x2, x3, x4, x5)) = x3
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c10(x1)) = x1
POL(c12(x1)) = x1
POL(c3(x1)) = x1
POL(c5(x1)) = x1
POL(c7(x1)) = x1
POL(c8(x1)) = x1
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
GROUP3(z0) → c(GROUP3#1(z0))
GROUP3#1(::(z0, z1)) → c1(GROUP3#2(z1, z0))
GROUP3#2(::(z0, z1), z2) → c3(GROUP3#3(z1, z2, z0))
GROUP3#3(::(z0, z1), z2, z3) → c5(GROUP3(z1))
ZIP3(z0, z1, z2) → c7(ZIP3#1(z0, z1, z2))
ZIP3#1(::(z0, z1), z2, z3) → c8(ZIP3#2(z2, z3, z0, z1))
ZIP3#2(::(z0, z1), z2, z3, z4) → c10(ZIP3#3(z2, z3, z4, z0, z1))
ZIP3#3(::(z0, z1), z2, z3, z4, z5) → c12(ZIP3(z3, z5, z1))
S tuples:
GROUP3(z0) → c(GROUP3#1(z0))
ZIP3(z0, z1, z2) → c7(ZIP3#1(z0, z1, z2))
ZIP3#2(::(z0, z1), z2, z3, z4) → c10(ZIP3#3(z2, z3, z4, z0, z1))
ZIP3#3(::(z0, z1), z2, z3, z4, z5) → c12(ZIP3(z3, z5, z1))
K tuples:
GROUP3#1(::(z0, z1)) → c1(GROUP3#2(z1, z0))
GROUP3#2(::(z0, z1), z2) → c3(GROUP3#3(z1, z2, z0))
GROUP3#3(::(z0, z1), z2, z3) → c5(GROUP3(z1))
ZIP3#1(::(z0, z1), z2, z3) → c8(ZIP3#2(z2, z3, z0, z1))
Defined Rule Symbols:none
Defined Pair Symbols:
GROUP3, GROUP3#1, GROUP3#2, GROUP3#3, ZIP3, ZIP3#1, ZIP3#2, ZIP3#3
Compound Symbols:
c, c1, c3, c5, c7, c8, c10, c12
(11) CdtKnowledgeProof (EQUIVALENT transformation)
The following tuples could be moved from S to K by knowledge propagation:
GROUP3(z0) → c(GROUP3#1(z0))
ZIP3#2(::(z0, z1), z2, z3, z4) → c10(ZIP3#3(z2, z3, z4, z0, z1))
ZIP3#3(::(z0, z1), z2, z3, z4, z5) → c12(ZIP3(z3, z5, z1))
GROUP3#1(::(z0, z1)) → c1(GROUP3#2(z1, z0))
ZIP3#3(::(z0, z1), z2, z3, z4, z5) → c12(ZIP3(z3, z5, z1))
ZIP3(z0, z1, z2) → c7(ZIP3#1(z0, z1, z2))
ZIP3#1(::(z0, z1), z2, z3) → c8(ZIP3#2(z2, z3, z0, z1))
Now S is empty
(12) BOUNDS(1, 1)